as SbCl_{5} at room temperature and above (where most kinetic processes have been studied) lies in the range 10^{2} to $10^{8} \mathrm{sec}^{-1}$. It seems altogether reasonable then that, in some mechanistic studies, pseudorotations of trigonalbipyramidal intermediates must be considered in accounting for product distribution. The main requirement exists that the lifetime of the intermediate exceeds the exchange time.

In fact, in the hydrolysis of cyclic phosphate esters, for example

Dennis and Westheimer ${ }^{20}$ postulate a pseudorotation of the trigonal-bipyramidal intermediate to account for the products formed. In their case, relatively light atoms are involved, and the reaction rate, $\sim 10^{-4} \mathrm{sec}^{-1}$ ($\mathrm{mol} / \mathrm{l}.)^{-1}$ at room temperature, is slow enough for exchange to occur.

However, it is clear that for the molecules under consideration pseudorotation is possible only because the coordinate governing exchange has a low frequency and large amplitude motion (hence a correspondingly small force constant) associated with a molecule of comparatively low reduced mass. The latter conditions may apply for these trigonal-bipyramidal molecules because of the apparent weakness of axial bonds compared to equatorial bonds.
(20) E. A. Dennis and F. H. Westheimer, J. Amer. Chem. Soc., 88, 3432 (1966).

Robert R. Holmes, Sr. Rose Mary Deiters
Department of Chemistry, University of Massachusetts Amherst, Massachusetts 01002 Received May 6, 1968

The Molecular Geometry of Derivatives of 1H-Azepine in the Free and Complexed State ${ }^{1}$

Sir:
The 1H-azepine molecule (1a) is isoelectronic with the cycloheptatrienide anion ${ }^{2}$ and, if planar, may in actuality be antiaromatic. ${ }^{3}$ Interestingly, molecular quantum mechanical calculations for such a model predict marked polyenic character and strong localization of the π electrons on nitrogen and the double bonds of the seven-membered ring with little, if any, tendency for delocalization. ${ }^{4}$ Although the parent 1 H -azepine (1a) remains to be synthesized, a few derivatives have been known since 1963. ${ }^{5,6}$ To the present time, however, no X-ray structural information has been obtained on these nitrogen-containing eight- π-electron systems. In an effort to elucidate the molecular

[^0]

Figure 1. A view of $\mathbf{1 b}$ looking along the z axis. Important distances are $\mathrm{N}_{1}-\mathrm{C}_{2} 1.43 \AA, \mathrm{C}_{2}-\mathrm{C}_{3} 1.38 \AA, \mathrm{C}_{3}-\mathrm{C}_{4} 1.44 \AA, \mathrm{C}_{4}-\mathrm{C}_{5} 1.34 \AA$, $\mathrm{C}_{5}-\mathrm{C}_{6} 1.46 \AA, \mathrm{C}_{6}-\mathrm{C}_{7} 1.37 \AA, \mathrm{~N}_{1}-\mathrm{C}_{7} 1.45 \AA$, and $\mathrm{N}_{1}-\mathrm{S}_{8} 1.61 \AA$ (estimated standard deviation $\pm 0.02 \AA$). The angles within the seven-membered ring are $\mathrm{N}_{1} 116^{\circ}, \mathrm{C}_{2} 118^{\circ}, \mathrm{C}_{3} 127^{\circ}, \mathrm{C}_{4} 123^{\circ}$, $\mathrm{C}_{5} 127^{\circ}, \mathrm{C}_{6} 124^{\circ}$, and $\mathrm{C}_{7} 121^{\circ}$ (estimated standard deviation $\pm 1.5^{\circ}$). The $\mathrm{S}_{8} \mathrm{~N}_{1} \mathrm{C}_{2}$ and $\mathrm{S}_{8} \mathrm{~N}_{1} \mathrm{C}_{7}$ angles are 118 and 120°, respectively.
geometry of this seven-membered ring in the free state, and when complexed with iron tricarbonyl, ${ }^{7}$ we have carried out three-dimensional X-ray studies on $\mathbf{1 b}{ }^{\mathbf{8}}$ and on the $\mathrm{Fe}(\mathrm{CO})_{3}$ complex of $1 \mathrm{c} .{ }^{8}$

$$
\begin{aligned}
& \mathrm{la}, \mathrm{R}=\mathrm{H} \\
& \mathrm{~b}, \mathrm{R}=\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br} \cdot p \\
& \mathrm{c}, \mathrm{R}=\mathrm{COOCH}_{3}
\end{aligned}
$$

1b crystallizes as lemon-yellow prisms, generally elongated along the b axis, and belongs to the orthorhombic system, with $a=12.32, b=5.96$, and $c=$ $16.53 \AA$ (Mo K $\alpha, \lambda 0.7107 \AA$). There are four molecules of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S}$ (mol wt 312.2) in the unit cell $\left(\rho_{\text {meas }}=1.68 \mathrm{~g} \mathrm{~cm}^{-3} ; \rho_{\text {calcd }}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}\right)$. Systematic absences establish the space group as $P 2_{1} 2_{1} 2_{1}$. The structure was determined by the heavy-atom method and has been refined by full-matrix least squares on 1274 independent intensities collected photographically ($\mathrm{Cu} \mathrm{K} \alpha$ radiation) to an R factor of 0.10 . A view of the structure with important molecular dimensions is given in Figure 1.

The iron tricarbonyl complex of 1c crystallizes as irregular orange prisms belonging to the triclinic system, with $a=8.62, b=6.47$, and $c=10.90 \AA$; $\alpha=93.4^{\circ}, \beta=93.0^{\circ}$, and $\gamma=104.4^{\circ}$ (Mo K α, λ $0.7107 \AA$). There are two molecules of $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \cdot \mathrm{Fe}$ $(\mathrm{CO})_{3}$ (mol wt 291.0) in the unit cell ($\rho_{\text {meas }}=1.60 \mathrm{~g}$ $\mathrm{cm}^{-3} ; \rho_{\text {caicd }}=1.65 \mathrm{~g} \mathrm{~cm}^{-3}$), and the structural analysis indicates that the space group is $\mathrm{P} \overline{\mathrm{I}}$. The structure has been refined by full-matrix least squares on 2008 independent intensities collected photographically (Mo $\mathrm{K} \alpha$ radiation) to an R factor of 0.10 . A view of the structure is shown in Figure 2.
(7) E. O. Fischer and H. Ruihle, Z. Anorg. Allgem. Chem., 341, 137 (1965).
(8) The synthesis of this material will be published independently.

Figure 2. A view of the iron tricarbonyl complex of $\mathbf{1 c}$ viewed along the z axis; the carbonyl groups are shaded in black. Within the seven-membered ring the distances are $\mathrm{N}_{1}-\mathrm{C}_{2} 1.38 \AA, \mathrm{C}_{2}-\mathrm{C}_{3}$ $1.34 \AA, \mathrm{C}_{3}-\mathrm{C}_{4} 1.45 \AA, \mathrm{C}_{4}-\mathrm{C}_{5} 1.40 \AA, \mathrm{C}_{\mathrm{j}}-\mathrm{C}_{6} 1.41 \AA, \mathrm{C}_{6}-\mathrm{C}_{7} 1.43 \AA$, $\mathrm{N}_{1}-\mathrm{C}_{7} 1.43 \AA$, and $\mathrm{N}_{1}-\mathrm{C}_{8} 1.37 \AA$ (estimated standard deviation $\pm 0.010-0.015 \AA$). The angles within the ring are $\mathrm{N}_{1} 124^{\circ}, \mathrm{C}_{2}$ $123^{\circ}, \mathrm{C}_{3} 129^{\circ}, \mathrm{C}_{4} 126^{\circ}, \mathrm{C}_{5} 118^{\circ}, \mathrm{C}_{6} 120^{\circ}, \mathrm{C}_{7} 125^{\circ}$ (estimated standard deviation $\pm 1^{\circ}$). The $\mathrm{C}_{8} \mathrm{~N}_{1} \mathrm{C}_{2}$ and $\mathrm{C}_{8} \mathrm{~N}_{1} \mathrm{C}_{7}$ angles are 120 and 116°, respectively.

In 1b, the molecule exists in a "boat" conformation ${ }^{9}$ relative to the best plane (maximum deviation $0.02 \AA$) through the atoms $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{6}$, and C_{7}, with $\mathrm{N}_{1}, \mathrm{C}_{4}$, and C_{5} lying $0.60,0.58$, and $0.54 \AA$, respectively, from this plane. The double bonds are definitely localized at $\mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{4}-\mathrm{C}_{5}$, and $\mathrm{C}_{6}-\mathrm{C}_{7}$, in contrast to the situation observed in tropolone in both anionic and cationic forms ${ }^{10,11}$ and in 2 -chlorotropone, ${ }^{12}$ although bond alternation has been recognized in cupric tropolone. ${ }^{13}$ The two atoms comprising each double bond and their immediate neighbors are coplanar (maximum deviation $0.01 \AA$). The dihedral angles within the seven-membered ring are listed in Table I . N_{1} deviates by $0.22 \AA$

Table I. Dihedral Angles in the Azepine Ring in the Free State and When Complexed with Iron Tricarbonyla

ABCD	1b	$-\mathrm{Fe}(\mathrm{CO})_{3}$ of ---	
		1c	Tropone
$\mathrm{C}_{7} \mathrm{~N}_{1}\left(\mathrm{C}_{1}\right) \mathrm{C}_{2} \mathrm{C}_{3}$	64	0	22
$\mathrm{N}_{1}\left(\mathrm{C}_{1}\right) \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	-3	-5	-7
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$	-34	-45	-48
$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	1	48	53
$\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}$	35	2	5
$\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{~N}_{1}\left(\mathrm{C}_{1}\right)$	-2	-71	-49
$\mathrm{C}_{6} \mathrm{C}_{7} \mathrm{~N}_{1}\left(\mathrm{C}_{1}\right) \mathrm{C}_{2}$	-61	54	23
$\mathrm{C}_{6} \mathrm{C}_{7} \mathrm{~N}_{1}\left(\mathrm{C}_{1}\right) \mathrm{X}$	147	-128	-162
$\mathrm{XN}_{1}\left(\mathrm{C}_{1}\right) \mathrm{C}_{2} \mathrm{C}_{3}$	-143	-178	-152
Atom 1	N	N	C
Atom X	S	C_{8}	0

${ }^{a}$ The angles calculated from the coordinates in troponeiron tricarbonyl are listed for comparison. ${ }^{b}$ The angle $A B C D$ is considered positive if, when looking along the BC bond from B to C , atom A has to be rotated clockwise to eclipse atom D. ${ }^{b}$ In troponeiron tricarbonyl, the atom numbering has been changed from that given in the original publication ${ }^{c}$ so that the ring consists of $\mathrm{C}_{1}-\mathrm{C}_{7}$, the carbon of the carbonyl group is C_{1}, and the $\mathrm{Fe}(\mathrm{CO})_{3}$ group complexes to $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$, and $\mathrm{C}_{7} .{ }^{\circ}$ R. P. Dodge, J. Am. Chem. Soc., 86, 5429 (1964).

[^1]from the plane defined by C_{2}, C_{7}, and S_{8}. This is a relatively small deviation for sp^{3} hybridization and, together with the valency angles around N_{t}, implies substantial sp^{2} character for the nitrogen atom. The dimensions of the benzenesulfonyl group attached to nitrogen are similar to those reported recently in sulfaguanidine monohydrate. ${ }^{14}$

The iron tricarbonyl moiety complexes to a fourcarbon atom residue cis to the carbonyl group in 1c. ${ }^{15}$ The Fe -complexing carbon atom distances range from 2.05 to $2.15 \AA$, and, as the $\mathrm{Fe}-\mathrm{N}_{1}$ and $\mathrm{Fe}-\mathrm{C}_{3}$ distances are effectively equal (3.08 and $3.06 \AA$), it does not appear that nitrogen participates in the complex formation. The two groups of four atoms C_{4}, C_{5}, C_{6}, and C_{7} and N_{1}, C_{2}, C_{3}, and C_{4} are approximately planar (maximum deviation $0.01 \AA$), with $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{O}_{9}, \mathrm{O}_{10}$, and C_{11} all within $0.06 \AA$ of the latter plane; the dihedral angle between these planes is 133°. The bond distances $\mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{5}-\mathrm{C}_{6}$, and $\mathrm{C}_{6}-\mathrm{C}_{7}$ are effectively equal and are consistent with delocalization in this portion of the seven-membered ring, ${ }^{16}$ while $\mathrm{C}_{2}-\mathrm{C}_{3}$ is a localized double bond. N_{1} is $0.01 \AA$ from the plane defined by its three-bonded neighbors.

The terminal atoms of the "butadiene group" each deviate by $0.05 \AA$ from the plane defined by the other three atoms. The geometry of this complex bears a general resemblance to the $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes of $2,4,6-$ triphenyltropone ${ }^{17}$ and of tropone, ${ }^{18}$ the most significant difference being the greater tendency toward planarity at N_{1} in the present structure. ${ }^{19}$ The angles C (carbonyl) $-\mathrm{Fe}-\mathrm{C}$ (carbonyl) can be divided into two large (99.5 and 101.6°) and one small (90.7°) as is generally true in $\mathrm{Fe}(\mathrm{CO})_{3}$-conjugated diolefin complexes. ${ }^{20}$

The present study reveals that $1 \mathbf{b}$ and, therefore, presuniably all closely related 1 H -azepines, exhibit little propensity to exist in the azanorcaradiene tautomeric form (2) or as azahomoaromatic entities of type 3, but are true polyenes.

(14) M. Alleaume, Abstracts of the American Crystallographic Association Winter Meeting, Tucson, Ariz., 1968, p 16, paper B6.
(15) H. Guinther and R. Wenzl, Tetrahedron Letters, 4155 (1967).
(16) The question of localized or delocalized π electrons in the "butadiene" portion of the ligand and its relation to a π - or $\sigma-\pi$ bond picture has been recently discussed by M. R. Churchill and R. Mason, Advan. Organometal. Chem., 5, 93 (1967), and by R. Pettit and G. F. Emerson, ibid., 1, 1 (1964).
(17) D. L. Smith and L. F. Dahl, J. Am. Chem. Soc., 84, 1743 (1962).
(18) See Table I, footnote c.
(19) A referee has suggested that the apparently shorter $\mathrm{N}_{1}-\mathrm{C}_{2}$ distance in the complex of $\mathbf{1 c}$, when compared to $\mathrm{N}_{1}-\mathrm{C}_{7}$ in that structure and to $\mathrm{N}_{1}-\mathrm{C}_{2}$ and $\mathrm{N}_{1}-\mathrm{C}$; in $\mathbf{1 b}$, may imply some interaction between N_{1} and the $\mathrm{C}_{2}-\mathrm{C}_{3}$ double bond in the complex of 1 c . Such an effect would contribute to the planarity at N_{1} and would be more likely in a urethan than in a simple amide or a sulfonamide.
(20) See, for example, O. S. Mills and G. Robinson, Acta Cryst., 16, 758 (1963); B. Dickens and W. N. Lipscomb, J. Chem. Phys., 37, 2084 (1962).
(21) Alfred P. Sloan Research Fellow.
(22) National Institutes of Health Predoctoral Fellow, 1966-present.

Iain C. Paul, ${ }^{21}$ Suzanne M. Johnson
Noyes Chemical Laboratory, University of Illinois
Urbana, Illinois 61801
Leo A. Paquette, James H. Barrett, Robert J. Haluska ${ }^{22}$
Evans Laboratory of Chemistry, The Ohio State University Columbus, Ohio 43210
Received May 27, 1968

[^0]: (1) Paper XLVI in the unsaturated heterocyclic systems series from The Ohio State University laboratories.
 (2) L. A. Paquette and J. H. Barrett, J. Am. Chem. Soc., 88, 1718 (1966).
 (3) R. Breslow, J. Brown, and J. J. Gajewski, ibid., 89, 4383 (1967).
 (4) R. W. Schmid, Helv. Chim. Acta, 45, 1982 (1962).
 (5) (a) K. Hafner and C. König, Angew. Chem., 75, 89 (1963); (b) W. Lwowski, T. J. Maricich, and T. W. Mattingly, Jr., J, Am. Chem. Soc., 85, 1200 (1963); (c) R. J. Cotter and W. F. Beach, J. Org. Chem., 29, 751 (1964).
 (6) For details of the preparation of substituted 1 H -azepines, see L. A. Paquette and D. E. Kuhla, Tetrahedron Letters, 4517 (1967).

[^1]: (9) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis," Interscience Publishers, New York, N. Y., 1965, pp 206-209.
 (10) Y. Sasada and I. Nitta, Acta Cryst., 9, 205 (1956); R. Shiono, ibid., 14, 42 (1961).
 (11) Y. Sasada and I. Nitta, Bull. Chem. Soc. Japan, 30, 62 (1957).
 (12) E. J. Forbes, M. J. Gregory, T. A. Hamor, and D. J. Watkin, Chem. Commun., 114 (1966).
 (13) W. M. Macintyre, J. M. Robertson, and R. F. Zahrobsky, Proc. Roy. Soc. (London), A289, 161 (1966).

